Tool | Description | Installation |
---|---|---|
Python | Programming language for AI | Download from python.org |
NumPy | Numerical computing library | `pip install numpy` |
Pandas | Data analysis library | `pip install pandas` |
Scikit-learn | Machine learning library | `pip install scikit-learn` |
Tool | Description | Installation |
---|---|---|
Python | Programming language for AI | Download from python.org |
NumPy | Numerical computing library | `pip install numpy` |
Pandas | Data analysis library | `pip install pandas` |
Scikit-learn | Machine learning library | `pip install scikit-learn` |
Step | Description | Code Example (Python) |
---|---|---|
Initialization | Set initial guessing range | low = 1; high = 100 |
Guessing | Generate a guess within the range | guess = (low + high) // 2 |
Feedback | Get user feedback | response = input('Too high, too low, or correct?') |
Update | Adjust range based on feedback | if response == 'too high': high = guess - 1 |
Step | Description | Code Example (Python) |
---|---|---|
Initialization | Set initial guessing range | low = 1; high = 100 |
Guessing | Generate a guess within the range | guess = (low + high) // 2 |
Feedback | Get user feedback | response = input('Too high, too low, or correct?') |
Update | Adjust range based on feedback | if response == 'too high': high = guess - 1 |
Component | Description | Function |
---|---|---|
Tokenization | Splitting text into words | nltk.word_tokenize() |
Stop Word Removal | Removing common words | nltk.corpus.stopwords |
Sentiment Scoring | Assigning sentiment scores | VADER lexicon |
Classification | Categorizing sentiment | Positive, Negative, Neutral |
Component | Description | Function |
---|---|---|
Tokenization | Splitting text into words | nltk.word_tokenize() |
Stop Word Removal | Removing common words | nltk.corpus.stopwords |
Sentiment Scoring | Assigning sentiment scores | VADER lexicon |
Classification | Categorizing sentiment | Positive, Negative, Neutral |
Step | Description | Code Snippet (Python) |
---|---|---|
Load Model | Load pre-trained MobileNetV2 | model = tf.keras.applications.MobileNetV2(weights='imagenet') |
Preprocess Image | Resize and normalize image | img = tf.keras.preprocessing.image.load_img(img_path, target_size=(224, 224)) |
Prediction | Make prediction on preprocessed image | predictions = model.predict(processed_img) |
Decode Prediction | Decode predictions into human-readable labels | decoded_predictions = tf.keras.applications.mobilenet_v2.decode_predictions(predictions) |
Step | Description | Code Snippet (Python) |
---|---|---|
Load Model | Load pre-trained MobileNetV2 | model = tf.keras.applications.MobileNetV2(weights='imagenet') |
Preprocess Image | Resize and normalize image | img = tf.keras.preprocessing.image.load_img(img_path, target_size=(224, 224)) |
Prediction | Make prediction on preprocessed image | predictions = model.predict(processed_img) |
Decode Prediction | Decode predictions into human-readable labels | decoded_predictions = tf.keras.applications.mobilenet_v2.decode_predictions(predictions) |